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7
Fractal Renewal Processes

Vilfredo Federigo Samaso Pareto
(1848–1923), an aristocratic Italian
economist associated with the Uni-
versity of Lausanne, discovered that
scale-invariant, power-law distribu-
tions characterize the income of in-
dividuals in many societies.

Working with Jay Berger in 1963,
Benoit B. Mandelbrot (born 1924)
identified self-similar error clusters
in data-transmission systems; he
long ago recognized that fractals
abound in many fields and set forth
the principles of fractal analysis.
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Perhapsthe simplest fractal-based point process is thefractal renewal process,
in which the intervals between successive events{τn} follow a decaying power-law
(hyperbolic) probability density function. Like all renewal processes (see Sec. 4.2),
these intervals are independent and identically distributed.

The power-law density function is known asPareto’s Law, in honor of Vilfredo
Pareto who first established it in 1896. Pareto successfully used it to characterize
a broad range of phenomena, the most celebrated of which is the income level of
individuals. And, indeed, Pareto’s Law has continued to enjoy widespread use in
econometric and financial analyses, and in the evaluation of risk in trading (see, for
example, Mandelbrot, 1960, 1964, 1982, 1997; Mandelbrot & Hudson, 2004).

A well-known modern application of this law lies in the statistics of errors follow-
ing data transmission over a telephone line. In an approach promulgated by Berger
& Mandelbrot (1963), a sequence of samples drawn from a power-law density forms
a fractal renewal process that is used to model the occurrences of these errors. It
had long been known that transmission-error occurrences appeared in clusters, and
in clusters of clusters; these clusters were separated by relatively long periods of
time during which no errors occurred. Using data provided by the German Federal
Telephone Administration, Berger & Mandelbrot (1963) demonstrated that the inter-
vals between errors could, in fact, be roughly described by a power-law distribution.
Similar behavior also characterized the inter-error intervals between 255-bitblocksof
data transmitted over telephone and high-frequency radio teletype circuits (Moriarty,
1963).

Mandelbrot (1965a) subsequently modified this model in a number of respects
in an attempt to achieve improved agreement with the error data; he mandated self-
similarity and, closely following Pareto, extended the duration of the upper interval to
infinity. Indeed, Mandelbrot’s (1965a) model characterized the inter-error intervals
far better than the standard geometric-distribution model in use at the time (Gilbert,
1961). More recently, Mandelbrot (1972, 1982, pp. 282–284) further refined this
model to make it more appealing from a mathematical perspective.
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POWER-LAW DISTRIBUTED INTEREVENT INTERVALS 155

This chapter is devoted to the properties of fractal renewal point processes, which
belong to the family of fractal point processes (see Sec. 5.5.1). Although less preva-
lent than their fractal-rate cousins, these processes find use in applications such as the
characterization of computer cache misses (Voldman, Mandelbrot, Hoevel, Knight &
Rosenfeld, 1983; Thiébaut, 1988) and the occurrences of earthquakes and their after-
shocks (Lapenna, Macchiato & Telesca, 1998; Telesca, Cuomo, Lanfredi, Lapenna
& Macchiato, 1999; Telesca, Cuomo, Lapenna & Macchiato, 2002a) (see Prob. 10.7,
however). They are also useful in a number of other areas, some of which are con-
sidered in the form of problems at the end of this chapter.

7.1 POWER-LAW DISTRIBUTED INTEREVENT INTERVALS

With all correlations and dependencies among the intervals excluded, the fractal
renewal process resets with the arrival of each event and no memory exists across
events. Paradoxically, a fractal-based point process still proves possible; the scaling
(fractal) behavior derives from the distribution of the intervals alone.

A probability density function that decays in a power-law form cannot conveniently
persist for all values of the random variable, since the resulting probability density
would have infinite area. Rather, we consider the general case in which we impose
probability-density cutoffs at both small and large times, as shown in Fig. 7.1. This
ensures that the resulting point process has a positive rate in the stationary (equilib-
rium) state.

7.1.1 Abrupt-cutoff interevent-interval density

The abrupt-cutoff power-law probability density function provides the simplest ex-
ample (Lowen & Teich, 1993d):

pτ (t) =
γ

A−γ −B−γ ×
{

t−(γ+1) A < t < B
0 otherwise,

(7.1)

whereB > A > 0 andγ > 0. The associated moments are

E[τn] =





γ
n− γ (A/B)γ Bn 1− (A/B)n−γ

1− (A/B)γ n 6= γ

γ ln(B/A)
A−γ −B−γ n = γ,

(7.2)

while the characteristic function is

φτ (ω) =
γ (iω)γ

A−γ −B−γ

∫ iωB

iωA

e−x x−(γ+1) dx. (7.3)

The Pareto density (1896) emerges in the special caseA = 1 andB → ∞. For
A ¿ B and0 < γ < 1, we can express Eq. (7.3) as (Lowen, 1992)

1− φτ (ω) ≈ Γ(1− γ) (iωA)γ (7.4)

in the rangeB−1 ¿ ω ¿ A−1.
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Fig. 7.1 Abrupt-cutoff (solid) and exponential-cutoff (dashed) interevent-interval probability
density functions,pτ (t) vs.t. The density functions exhibit a power-law region betweent = A
andt = B. In this illustration, we set the lower and upper cutoffs atA = 10−3 andB = 103,
respectively. The power-law exponent of the density has a value− 3

2
= −(γ + 1) so that

γ = 1
2
.

7.1.2 Exponential-cutoff interevent-interval density

We can impose smooth transitions on this power-law behavior by using the interevent-
interval density function (Lowen & Teich, 1993d)

pτ (t) =
(AB)γ/2

2Kγ

(
2
√

A/B
) e−A/t e−t/B t−(γ+1), (7.5)

whereKγ(x) denotesthe modified Bessel function of the second kind of orderγ. It
is sometimes referred to as thegeneralized inverse Gaussian density(Barndorff-
Nielsen, Blaesild & Halgreen, 1978).

The associated moments then become

E[τn] = (AB)n/2
K|γ−n|

(
2
√

A/B
)

Kγ

(
2
√

A/B
) , (7.6)

andthe corresponding characteristic function can be written as

φτ (ω) = (1 + iωB)γ/2 Kγ

[
2(A/B + iωA)1/2

]

Kγ

(
2
√

A/B
) . (7.7)
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For γ = 1
2 andB → ∞, Eq. (7.7) becomes the one-sidedstable distribution of

order 1
2 (Feller,1971), which was provided previously in Eq. (3.13). Combined with

exponential tails, one-sided stable distributions for arbitrary values ofγ between zero
and unity also follow power-law forms while providing smooth transitions (Lowen,
1992).

Constructing a renewal point process using any of these random variables leads to
a point process with fractal properties, as we will demonstrate shortly.

7.1.3 Effect of γ on interval variability

Whatever the nature of the cutoff, asB →∞ the character of the process changes as
γ passes through unity. Values ofγ smaller than unity lead to intervals with infinite
mean, whereas values ofγ in excess of two ensure finite variance. In the range
1 < γ < 2, the interevent intervals have finite mean but exhibit wild variation about
that mean as a result of the infinite variance of the intervals in this range. As a general
rule of thumb, the variability decreases asγ increases.

WhenB is finite, so that all moments are finite, the value ofγ nevertheless con-
tinues to play an important role in determining the variability of the intervals. Asγ
increases, the interval density becomes more concentrated near the lower cutoff,A,
with proportionately fewer intervals nearB. This results in a renewal process with
reduced variability. Equation (7.2) highlights this effect; the mean interevent interval
in the limit A/B ¿ 1 is E[τ ] ≈ √

AB for γ = 1
2 whereasit is E[τ ] ≈ 3A for γ = 3

2 .
SinceE[τ ] is independent ofB for γ > 1 andA/B ¿ 1, relatively few intervals lie
nearB. Extreme events are therefore relatively less likely than forγ < 1.

7.2 STATISTICS OF THE FRACTAL RENEWAL PROCESS

7.2.1 Point-process spectrum

We begin with the point-process spectrum of the fractal renewal point process. In
the mid-frequency range,B−1 ¿ f ¿ A−1, we obtain (see Sec. A.4.1 and Lowen,
1992; Lowen & Teich, 1993d):

SN (f) → E[µ]×





2
[
Γ(1− γ)

]−1 cos(πγ/2) (2πfA)−γ 0 < γ < 1

π
[
ln(2πfA)

]−2 (2πfA)−1 γ = 1
2γ−2 (γ − 1) Γ(2− γ)

[− cos(πγ/2)
]
(2πfA)γ−2 1 < γ < 2

− 1
2 ln(2πfA) γ = 2

γ−1 (γ − 2)−1 γ > 2.
(7.8)
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Fig. 7.2 Normalized spectra,SN (f) /limf→0 SN (f) , for the fractal renewal point process.
In this illustration,A = 10−3 andB = 103. The four solid curves represent spectra corre-
sponding to different interevent-interval densities, with the following properties (top to bottom):
exponential cutoffs withγ = 3

2
(×1 000), exponential cutoffs withγ = 1

2
(×100), abrupt

cutoffs withγ = 3
2

(×10), and abrupt cutoffs withγ = 1
2

(×1). The curves were obtained
by using Eqs. (7.3) and (7.7) in Eq. (4.16), for the abrupt and exponential cutoffs, respectively.
The dashed curves are asymptotic forms for the abrupt-cutoff interevent-interval densities,
drawn from the low-, mid-, and high-frequency spectral limits represented by Eqs. (4.17),
(7.8), and (3.59), respectively. All four spectra decrease with frequency asf−1/2 in the re-
gion B−1 ¿ f ¿ A−1, in accordance with Eq. (7.9); however, those forγ = 3

2
depart

moremarkedly from the asymptotic values than do those forγ = 1
2
. Spectra associated with

abrupt-cutoff interval probability densities exhibit marked oscillations at higher frequencies.

Equation (7.8) reveals that the value ofα associated with the spectrum depends onγ
in accordance with

α =





γ 0 < γ < 1
2− γ 1 < γ < 2
0 γ > 2.

(7.9)

Thus,α neither attains, nor exceeds, unity over the mid-frequency range. Indeed, this
kind of behavior emerges for all power-law forms of the interevent-interval density;
hence the fractal renewal point process generates1/fα noise only in the range0 <
α < 1.

Figure 7.2 displays the spectra for abrupt and exponential cutoffs, normalized to
the values indicated at the low-frequency limits. We generated these curves by mak-
ing use of Eq. (4.16), together with Eqs. (7.3) and (7.7) for the abrupt and exponential
cutoffs, respectively. The low-, mid-, and high-frequency asymptotes are set forth in
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Eqs. (4.17), (7.8), and (3.59), respectively. The abrupt-cutoff probability density func-
tions exhibit substantial oscillations in the characteristic function, which appear in the
spectra. The exponential-cutoff density functions, in contrast, generate smooth tran-
sitions in the time domain and therefore nonoscillatory spectra. Interevent-interval
probability density functions withγ = 1

2 andγ = 3
2 both translate to spectra that

exhibit a fractal spectral exponent−α = − 1
2 , but the latter depart more markedly

from asymptotic values. A simulated version of the spectrum for the abrupt-cutoff
case withγ = 3

2 is shown in Fig. B.12.
We can derive a closed-form expression for the spectrum for the smooth-transition

interevent-interval probability density function given in Eq. (7.5) forγ = 1
2 ; we

consider the normalized caseAB = 1 to simplify the ensuing calculations (see
Sec. A.4.2):

SN (f) = E2[µ] δ(f) +
sinh(c)

cosh(c)− cos(d)
, (7.10)

with

c ≡
√

2A
(√

A2 + ω2 + A
)1/2

− 2A (7.11)

d ≡
√

2A
(√

A2 + ω2 −A
)1/2

. (7.12)

In fact, given enough patience, closed-form expressions can be derived forγ = n+ 1
2 ,

wheren is any nonnegative integer.

7.2.2 Coincidence rate

Inverse Fourier transforms of the abrupt-cutoff spectrum formulas given in Eq. (7.8)
are readily calculated. This leads to approximate formulas for the coincidence rate
of the power-law process in the rangeA ¿ |t| ¿ B, for positive values ofγ (see
Sec. A.4.3):

G(t) → E[µ]×





π−1 sin(πγ)A−γ tγ−1 0 < γ < 1

A−1
[
ln(t/A)

]−1
γ = 1

γ−2 (γ − 1)Aγ−2 t1−γ 1 < γ < 2
1
4 t−1 γ = 2
E[µ] γ > 2.

(7.13)

For the exponential-cutoff interevent-interval density provided in Eq. (7.5) and
γ = 1

2 , we can write the coincidence rate in the following form:

G(t) = E[µ] δ(t) + E[µ]
∞∑

n=1

p?n(|t|)

= (AB)−1/2 δ(t) + (πB)−1/2 |t|−3/2 exp(−|t|/B)

×
∞∑

n=1

n exp
[
2(A/B)1/2 n− (A/|t|) n2

]
. (7.14)
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Fig. 7.3 Coincidence rate for a fractal renewal point process constructed with the exponential-
cutoff probability density function specified in Eq. (7.5). The parameters areγ = 1

2
,A = 10−3,

andB = 103 (solid curve). The straight-line asymptotes derive from simplifying Eq. (7.15)
in the limit |t| ¿ B and from Eq. (3.51).

In the limit |t| À A and B À A, the terms comprising the sum in Eq. (7.14)
vary slowly. An integral then provides a good approximation to the sum, and the
coincidence rate simplifies to

G(t) ≈ (πB)−1/2 |t|−3/2 e−|t|/B

∫ ∞

0

x exp
[
2(A/B)1/2 x− (A/|t|) x2

]
dx

=
e−|t|/B

√
4πA2B |t|

+
1

2AB
erfc

(
−

√
|t|
B

)
, (7.15)

wherethe complementary error function is given by

erfc(x) ≡ 2π−1/2

∫ ∞

x

exp(−t2) dt. (7.16)

The coincidence rate represented in Eqs. (7.14)–(7.16), which is applicable for expo-
nential cutoffs andγ = 1

2 , is displayed in Fig. 7.3.

7.2.3 Normalized variances

The counting statistics of renewal point processes are often provided in terms of a
special type of factorial moment, set forth in Eq. (4.19). For the fractal renewal point
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Fig. 7.4 Simulated normalized varianceF (T ) vs. counting timeT for a fractal renewal point
process with abrupt cutoffs (solid curve). The parameters used to generate this curve areγ = 1

2

(α = 1
2
), A = 10−3, andB = 103; 100 independent simulations were used, each of duration

L = 108. Asymptotic results are shown as dashed. The mean rate is unity (E[µ] = E[τ ] = 1).
The associated normalized Haar-wavelet variance is shown in Fig. 7.5.

process at hand, we can cast these factorial moments in relatively simple form when
A ¿ |t| ¿ B and0 < γ < 1, even for arbitrary cutoffs.

SinceG(t) ∼ tγ−1, we haveG?k(t) ∼ tkγ−1, whereupon Eq. (4.19) provides

E
{

[Z(T ) + k]!
[Z(T )− 1]!

}
∼ T kγ+1. (7.17)

The constants of proportionality depend on the details of the interevent-interval prob-
ability density function.

In particular, for the abrupt-cutoff fractal renewal point process with arbitraryγ,
we can readily obtain expressions for the normalized variance and normalized Haar-
wavelet variance in the rangeA ¿ T ¿ B. Substituting Eq. (7.13) into Eqs. (3.52)
and (3.53) yieldsF (T ) andA(T ), respectively (see Sec. A.4.4):

F (T ) →





2
[
πγ(γ + 1)

]−1 sin(πγ)A−γ T γ 0 < γ < 1

A−1
[
ln(T/A)

]−1
T γ = 1

2
[
γ2(2− γ)(3− γ)

]−1 (γ − 1)Aγ−2 T 2−γ 1 < γ < 2
1
2 ln(T/A) γ = 2
1 γ > 2

(7.18)
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Fig. 7.5 Simulated normalized Haar-wavelet varianceA(T ) vs. counting timeT for a fractal
renewal point process with abrupt cutoffs (solid curve). The parameters are the same as those
specified in Fig. 7.4, which displays the associated normalized variance. We show asymptotic
results as dashed lines. A simulated version ofA(T ) for γ = 3

2
, which also corresponds

to α = 1
2
, appears in Fig. B.13. The dip in the curve derives from the abrupt cutoff in the

interevent-interval density for small intervals.

while

A(T ) →





4(1− 2γ−1)
[
πγ(γ + 1)

]−1 sin(πγ) A−γ T γ 0 < γ < 1

2 ln(2) A−1
[
ln(T/A)

]−2
T γ = 1

4(1− 21−γ)
[
γ2(2− γ)(3− γ)

]−1 (γ − 1)Aγ−2 T 2−γ 1 < γ < 2
1
2 ln(T/2A) γ = 2
1 γ > 2.

(7.19)

Since it is difficult to obtain useful analytic forms for the normalized varianceF (T )
and the normalized Haar-wavelet varianceA(T ) over the full range of counting times
T , we present simulations for these quantities as functions ofT in Figs. 7.4 and 7.5,
respectively. The solid curves represent simulated results forγ = 1

2 (α = 1
2 ); the

central asymptotes (dashed lines) represent Eqs. (7.18) and (7.19), respectively. A
cartoon version of the normalized Haar-wavelet variance was presented earlier, as the
solid curve in Fig. 5.4d).
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7.2.4 Counting distribution

We present simulated counting distributions in Fig. 7.6 forγ = 1
2 (solidcurve) andγ =

3
2 (dashedcurve), when the mean countE[Z] = 10. Again, we employ simulations
because tractable analytic results cannot be obtained. We display the curves on
doubly logarithmic coordinates to highlight the different count ranges spanned by
the two curves. Although theinterevent-intervalstandard deviations are identical for
the two values ofγ, the variances of the associatedcountingdistributions are very
different. Estimating these values from the simulated counting distributions yields
Var[Z(10E[τ ])] .= 777.703 for γ = 1

2 andVar[Z(10E[τ ])] .= 28.9254 for γ = 3
2 .

As expected, the variance is larger for the smaller value ofγ. We also plot a Poisson
distribution of the same mean for comparison (dotted curve). These fractal-renewal-
process counting distributions are distinctly non-Gaussian. However, the renewal
nature of the process and the finite cutoffs assure us that they converge to Gaussian
form forT/B À 1; Eq. (4.18) applies in that domain. Identical counting distributions
obtain whenA, B, andT are all multiplied by a common factor, since the determining
parameters areratios between the times rather than the times themselves.

POISSONFRP T = 10, 
 = 32FRP T = 10, 
 = 12ÆÆ

ÆÆ

NUMBER OF COUNTS nSIM.COUNT
.DISTRIBUT
IONp Z(n;T)

1001010

10010�210�410�610�8
Fig. 7.6 Simulated counting distributions,pZ(n; T ) vs. number of countsn, for two fractal
renewal point processes with abrupt cutoffs. The parameters used to generate these curves
wereE[τ ] = 1, T = 10, andB/A = 106. These values, in turn, give rise to the following
exact (not rounded) values for the remaining parameters. Forγ = 1

2
we have: A = 10−3,

B = 103, andVar[τ ] = 332.667; for γ = 3
2

we have:A = 0.333667, B = 333667.0, and
againVar[τ ] = 332.667.
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7.2.5 Capacity dimension

Calculation of the capacity dimension (see Secs. 2.1.1 and 3.5.4) yields the expected
result: for the parameter ranges0 < γ < 1 and0 < A ¿ B < ∞, the points
generated by the fractal renewal process do indeed form a fractal set with dimension
γ, in the sense of Eq. (3.72) (Lowen & Teich, 1993d).

Consider a realization of the process and a covering of it using segments of length
B, as shown in Fig. 7.7. For minimal covering, place the beginning of each segment
on the first uncovered event. The empty space between coverings is thus the residual
waiting time for a pure renewal point process at timeB. This construction closely
resembles that for fixed dead time, which is illustrated in Fig. 11.1d) and discussed
in Sec. 11.2.4.

FRACTAL RENEWAL PROCESS

-

6

t1

B¾ -

6

t2

B¾ -

6

t3

6

t4

B¾ -

6

t5
TIME t

Fig. 7.7 Realization of a fractal renewal point process and its minimal covering. For this
particular illustration, three segments suffice to cover the set. Events occurring att3 andt5 lie
within a durationB of the prior event at which a segment initiates, and therefore do not require
additional segments.

Let W (B) represent the expected value of the time between coverings, including
the coverings themselves. Wald’s Lemma (Feller, 1971) then provides

W (B) = E2[τ ]
∫ B

0−
G(t) dt, (7.20)

where the notation0− indicates that the range of the integral spans the delta function
contribution toG(t) at t = 0. For the rangeA ¿ B ¿ B, the approximation
G(t) ∼ tγ−1 yieldsW (B) ∼ Bγ . The number of intervals required to cover the fractal
renewal point process thus scales asB−γ , and the capacity dimension is thereforeγ.

7.3 NONDEGENERATE REALIZATION OF A ZERO-RATE PROCESS

Both versions of the fractal renewal point process set forth in Sec. 7.1, namely the
abrupt- and exponential-cutoff forms, can be extended toB → ∞. The associated
interevent-interval probability density functions then become

pτ (t) =
{

γAγ t−(γ+1) t > A
0 t ≤ A,

(7.21)
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and

pτ (t) =
1

Γ(γ)
Aγ e−A/t t−(γ+1), (7.22)

respectively. Equation (7.21) is often called thegeneralized Pareto density.
Focusing on the case0 < γ < 1, both interevent-interval probability density

functions are well defined; however, the moments ofτ , E[τn], are infinite for all
positive integersn. In particular,E[τ ] = ∞, so thatE[µ] = 1/E[τ ] = 0, indicating
that the resulting renewal point process has zero rate in the stationary (equilibrium)
case. Since the rate cannot assume negative values, this implies, with probability one,
that no events can occur in any finite interval.

However, we can extend the framework considered earlier for the positive-rate
stationary fractal renewal point process and, in fact, obtain nontrivial results for the
zero-rate nonstationary case. For renewal point processes that are not in equilibrium,
but rather begin with an event, the zero-rate argument does not apply and the resulting
statistics can indeed assume nondegenerate values. A segment of such a nonstationary
renewal point processes can therefore contain a positive number of events, even though
the mean number of events in a comparable segment of the stationary process assumes
a value of zero. For the interevent-interval probability density functions specified in
Eqs. (7.21) and (7.22), the probability of observing zero events in a segment of length
T can still become vanishingly small as the ratioT/A increases.

In general, a fractal renewal point process that begins with the occurrence of
an event, with an associated interevent-interval probability density functionp(t) ∼
t−(γ+1), has a residual waiting time that approaches a limiting density (Feller, 1971).
Specifically, suppose that we can cast the interevent-interval survivor function in the
form

Sτ (t) = 1− Pτ (t) =
∫ ∞

t

p(v) dv = t−γL(t), (7.23)

whereL(t) is a “slowly varying” function such that, for anyx > 0,

lim
t→∞

L(xt)/L(t) = 1. (7.24)

Equations (7.21) and (7.22) both fall in this category. Recall, now, from Eq. (3.10) that
ϑ(t) denotes the random interval between the deterministic timet and the next event
in the fractal renewal point process. This random intervalϑ(t) then has a probability
density function given by (Feller, 1971)

pϑ(s) =
tγ sin(πγ)

π

s−γ

s + t
. (7.25)

Thus,when a fractal renewal point process with zero mean rate begins at the occur-
rence of an event, the resulting process has a nonzero effective rate for all finite times.
We conclude that any experiment will, of necessity, record a process with a positive
expected rate, and the results derived above will also apply to this process.

Any realization of an infinite-mean fractal renewal point process that begins with
an event, and which we observe for a finite time, will exhibit largest and smallest
intervals, which we labelB∗ andA∗, respectively. Given the power-law exponent
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of the distribution, and only the valuesA∗ andB∗, the other intervals will follow a
power-law distribution between them, and will exhibit the same power-law exponent.
The observed process will therefore have the same statistics as a finite-mean fractal
renewal point process, with cutoff timesA < A∗ andB > B∗, and the results derived
above will apply to this process with thea posteriorivalues ofA∗ andB∗. Although
we cannot know the valuesA∗ andB∗ a priori, the sample spectrum will decay in a
power-law fashion, whatever these values may be.

Problems

7.1 Distinct processes with a common fractal exponentUse the abrupt-cutoff
power-law probability density function provided in Eq. (7.1) to construct two different
fractal renewal point processes that have the following parameters: fractal exponent
α = 1

2 , fractal onset frequencyfS = 10 Hz, andB/A = 106. Find the mean rate
E[µ] for both.

7.2 Characteristic function for the exponential-cutoff interval densityFind an
approximate expression for the characteristic function along the lines of Eq. (7.4), but
for the smoother interevent-interval density function provided in Eq. (7.5). Note that
the modified Bessel function of the second kind varies asKγ(z) ≈ 2γ−1 Γ(γ)z−γ

for small argumentsz (Gradshteyn & Ryzhik, 1994, Secs. 8.445 and 8.485).

7.3 Deriving the point-process spectrum from the characteristic functionUse
Eq. (7.4) to reproduce the0 < γ < 1 condition in Eq. (7.8).

7.4 Relation of mean rate and fractal onset frequencyConsider the abrupt-cutoff
power-law density in Eq. (7.1) forA ¿ B.

7.4.1. Find an equation that relates the mean rateE[µ] to the fractal onset frequency
fS in the range1 < γ < 2.

7.4.2. Find an inequality that relates these quantities in the range0 < γ < 1.

7.5 Limiting form for the characteristic function Show that Eq. (7.4) obtains for
the stated limits.

7.6 Simulation time To obtain good estimates ofF (T ) andA(T ) for presen-
tation in Figs. 7.4 and 7.5, we made use of 100 independent simulations of fractal
renewal point processes, each of duration108. The simulation of the point processes
and the calculation of these statistics took about 24 hours of computation time on a
personal computer with a clock speed of 1.6 GHz. The simulated point processes
were represented by floating-point numbers at four bytes per interevent interval; for
fastest execution times these numbers were stored in memory for the calculation of
F (T ) andA(T ). Why were curves forγ = 3

2 with the same values forA andB not
included in these figures?

7.7 Error clustering in telephone networks In the 1960s, researchers began to
recognize that data errors following information transmission over telephone lines
could not be properly described by a memoryless binary symmetric channel, with its
attendant geometric distribution of inter-error intervals and binomial distribution of
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error counts. Gilbert (1961) attempted to improve the state of affairs by considering
a channel that switched between two states that suffered different error probabilities.
This added variability allowed some qualitative features of the data to be modeled,
but this approach fell far short of providing detailed agreement.

Shortly thereafter, Berger & Mandelbrot (1963) and Mandelbrot (1965a) made a
substantial advance. These authors recognized that a fractal renewal point process,
with power-law rather than geometric inter-error intervals, provided a far superior
model for characterizing the data errors. It had long been known that such errors
appeared to occur in clusters, and in clusters of clusters, a feature that is the hallmark
of a fractal point process.

Consider a system that exhibits errors that obey this fractal-renewal-process model.
Suppose now that we add another source of noise, independent of the first, that takes
the form of a homogeneous Poisson process with a large mean time between events
τHPP. The overall noise process then comprises the superposition of error events,
which are clustered, and events associated with the homogeneous Poisson process,
which are not clustered. If the presence (or absence) of an error cluster is verified
everyτclk seconds, determine the process that characterizes the error events.

7.8 Action-potential statistics in an insect visual-system interneuron: Counter-
example The curve in Fig. 7.8 displays the estimated interevent-interval density

INTERNEURON
INTEREVENT INTERVAL t (se
)ESTIMATED

INTERVALD
ENSITYbp �(t)

10110010�110�2

10110010�110�210�3
Fig. 7.8 Estimated interevent-interval density,p̂τ (t) vs. interevent intervalt, for an action-
potential sequence recorded from the descending contralateral movement detector, a visual-
systeminterneuron in the locust (Turcott et al., 1995, Fig. 2, pp. 261–262, cell ADA062).
The normalized Haar-wavelet variance for these same data appears in Fig. 7.9.
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INTERNEURON
COUNTING TIME T (se
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Fig. 7.9 Estimated normalized Haar-wavelet varianceÂ(T ) vs. counting timeT (sec), for
an action-potential sequence recorded from the descending contralateral movement detec-
tor, a visual-systeminterneuron in the locust (Turcott et al., 1995, Fig. 2, pp. 261–262,
cell ADA062). Unlike the display provided in Fig. 5.2, the abscissa reports the counting time
in unnormalized form. The interevent-interval density for these same data appears in Fig. 7.8.

function for a spontaneous sequence of action potentials recorded from a visual-
systeminterneuron in the locust, the descending contralateral movement detector
(Turcott et al., 1995), plotted on doubly logarithmic coordinates. The curve in Fig. 7.9
shows the estimated normalized Haar-wavelet varianceÂ(T ), plotted as a function
of the counting timeT , for these same data.

7.8.1. Determine the values of̂γ, Â, andB̂ that characterize the interval data in
Fig. 7.8. What is the corresponding value ofα̂ for a fractal renewal point process?

7.8.2. What is the origin of the slight dip below unity observed in the data in
Fig. 7.9? Determine the values ofα̂A andT̂A that characterize this plot.

7.8.3. Why does the value of̂αA observed from the normalized Haar-wavelet
variance differ so drastically from the value predicted for a fractal renewal point
process?

7.9 Molecular evolution The numbers of differences in amino-acid sequences in
related organisms appear to be roughly proportional to the time since the organisms
diverged in their joint evolutionary history (Zuckerkandl & Pauling, 1962). This leads
to the notion of a molecular clock (Zuckerkandl & Pauling, 1965). While this process
lacks extensive data, the existing data are adequate to exclude the homogeneous
Poisson process as a viable model (Gillespie, 1994). Review the evidence presented
by Gillespie (1994); West & Bickel (1998); Bickel & West (1998a,b); and Bickel
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(2000), and provide a rationale for the use of a fractal renewal point process to model
the available data.

7.10 Trapping in amorphous semiconductors A number of approaches have
been used to investigate the relationship between trapping processes and1/f noise
in semiconductors (McWhorter, 1957; Stepanescu, 1974; Scher & Montroll, 1975;
Tiedje & Rose, 1980; Orenstein, Kastner & Vaninov, 1982; Kastner, 1985; Hooge,
1995, 1997). In particular, the multiple trapping model forges a connection between
traps that are exponentially distributed over a large range of energies and a transient
current that decays as a power-law function of time. Once emitted by a trap, a carrier is
available to conduct current for a very brief interval of time before it falls into another
trap. For any particular carrier, the times spent in successive traps are independent.
Consider an amorphous semiconductor with localized states (traps) whose energies
are exponentially distributed, with parameterE0, between the limitsEL andEH .
If the random variableE represents the trap energy relative to the conduction band
edge, the probability density function for the trap energypE(E) is

pE(E) =
{

c exp(−E/E0) EL < E < EH

0 otherwise,
(7.26)

wherec is a normalization constant.
7.10.1. Determine the value ofc in terms of the remaining parameters of the

model.
7.10.2. For a trap at energyE, the corresponding mean waiting timeq(E) = E[τ ]

is given byτ0 exp(E/κT ), whereτ0 is the average vibrational period of the atoms in
the semiconductor,κ is Boltzmann’s constant, andT is the absolute temperature of
the material. Show how to recast the multiple trapping model for a single carrier in
terms of the fractal renewal point process by using the definition ofq(E) given above
and Eq. (7.26) (Lowen & Teich, 1992b; Lowen, 1992).

7.10.3. Given the conditional meanq(E), each trap is assumed to hold carriers
for times that follow an exponential density function:

pτ

[
t|q(E)

]
=

1
q(E)

e−t/q(E). (7.27)

Average the density provided in Eq. (7.27) over all possible values ofq(E) to de-
termine the unconditional trapping-time density. Obtain an asymptotic form for the
caseA ¿ t ¿ B.
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